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ABSTRACT
The gut microbiota (GM) and its metabolites affect the host nervous system and are involved in the 
pathogeneses of various neurological diseases. However, the specific GM alterations under patho-
genetic pressure and their contributions to the “microbiota – metabolite – brain axis” in 
Alzheimer’s disease (AD) remain unclear. Here, we investigated the GM and the fecal, serum, 
cortical metabolomes in APP/PS1 and wild-type (WT) mice, revealing distinct hub bacteria in AD 
mice within scale-free GM networks shared by both groups. Moreover, we identified diverse 
peripheral – central metabolic landscapes between AD and WT mice that featured bile acids (e.g. 
deoxycholic and isodeoxycholic acid) and unsaturated fatty acids (e.g. 11Z-eicosenoic and palmi-
toleic acid). Machine-learning models revealed the relationships between the differential/hub 
bacteria and these metabolic signatures from the periphery to the brain. Notably, AD-enriched 
Dubosiella affected AD occurrence via cortical palmitoleic acid and vice versa. Considering the 
transgenic background of the AD mice, we propose that Dubosiella enrichment impedes AD 
progression via the synthesis of palmitoleic acid, which has protective properties against inflam-
mation and metabolic disorders. We identified another association involving fecal deoxycholic 
acid-mediated interactions between the AD hub bacteria Erysipelatoclostridium and AD occurrence, 
which was corroborated by the correlation between deoxycholate levels and cognitive scores in 
humans. Overall, this study elucidated the GM network alterations, contributions of the GM to 
peripheral – central metabolic landscapes, and mediatory roles of metabolites between the GM 
and AD occurrence, thus revealing the critical roles of bacteria in AD pathogenesis and gut – brain 
communications under pathogenetic pressure.
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Introduction

The gut microbiota (GM) is a micro-ecosystem com-
prising microorganisms that compete and cooperate.1 

The GM produces various metabolites that provide 
energy for its constituents and the host. GM-derived 
metabolites can modulate the host’s immune and 
neural activities. Conversely, the GM can also be 
regulated by the host’s brain functions and metabolic 
activities. Such bidirectional connections between the 
GM and brain constitute the “GM – metabolite – 
brain axis”.2 Numerous studies have revealed the 
effects of certain microorganisms and their specific 
metabolites on brain functions as well as strong 

correlations between the GM and the pathogeneses 
of neurological diseases such as Parkinson’s disease, 
depression, and Alzheimer’s disease (AD).3–6 

However, neither the alterations of GM-associated 
metabolic landscapes under pathogenetic pressure 
nor the feedback regulatory mechanisms that underlie 
the GM – metabolite – brain axis are fully understood.

AD is a progressive neurodegenerative disorder 
characterized by cognitive impairment, psycho- 
behavioral abnormalities, and reduced social abilities. 
Patients with AD account for an estimated 60–80% of 
dementia cases, and 11.3% of people aged ≥ 65 are 
living with AD.7 Existing AD treatments have very
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limited efficacy owing to the incomplete understand-
ing of the disease’s pathological mechanisms. Among 
the molecular and cellular processes involved in AD 
pathogenesis, the extracellular aggregation of amy-
loid-beta (Aβ), hyperphosphorylation of tau protein 
(which form neurofibrillary tangles), and mitochon-
drial metabolic disorders are strongly correlated 
with AD progression.8 However, recent studies indi-
cate an intimate association between the GM and AD 
pathogenesis, suggesting that peripheral organs are 
involved in AD progression.9 GM dysbiosis can result 
in the secretion of toxic metabolites that invade the 
systemic circulation where they induce the differen-
tiation and accumulation of peripheral immune cells, 
promoting their infiltration into the brain.10,11 In 
contrast, unsaturated fatty acids are important dietary 
nutrients that may prevent or reduce the risks of 
mental disorders, such as anxiety, depression, and 
mild cognitive impairment.12,13 Supplementation 
with ω-3 polyunsaturated fatty acids, especially doc-
osahexaenoic acid (DHA), is beneficial for cognitive 
functions and may protect neuronal health through its 
downstream product, neuroprotectin D1.14 Certain 
GM-derived short-chain fatty acids (SCFAs) can pro-
mote astrocyte – neuron glutamate – glutamine shut-
tling and alleviate cognitive and spatial memory 
deficits in AD mice.15 In addition, several metabolo-
mics studies on AD report associations between blood 
metabolites and brain functions.16–18 For example, as 
essential metabolites produced by the liver and meta-
bolized by GM, bile acids exhibit aberrant levels in 
serum and brain samples from patients with AD. 
Moreover, the altered bile acid profiles are associated 
with amyloid, tau, and cognitive changes in patients 
with AD.19–21 In addition, bile acids can cross the 
blood – brain barrier and regulate neurological func-
tions through their receptors.18 Nevertheless, as the 
blood serves as a reservoir for metabolic substances 
from multiple peripheral organs, it remains challen-
ging to ascertain the origin(s) of metabolic changes in 
the blood and elucidate how changes in the GM 
specifically contribute to metabolic alterations of the 
gut, blood, and brain.

Complex network analysis has emerged as 
a valuable tool for investigating the topological 
features of ecological networks. Network analysis 
has been used to reveal microbial relationships and 
assess the controllability of micro-ecosystems in 
marine, groundwater, and soil environments.22–24 

Accordingly, in the present study, we used complex 
network analysis to identify the hub bacteria of GM 
networks and investigate GM modulation and 
intervention.25 Meanwhile, mediation analysis is 
a robust approach for discerning the causality 
between independent and dependent variables 
through mediators; this strategy is widely applied 
in clinical medicine to identify risk factors or early 
indicators for critical diseases (e.g., cancers).26,27 

Accordingly, in this study, we adopted mediation 
analysis to decipher the intricate connections 
between GM alterations and disease occurrence 
via the mediation of metabolites and thereby 
enhance our understanding of the adaptive and 
feedback mechanisms of the GM in response to 
host pathogenetic factors.

Hence, in this study, we comprehensively 
investigated AD pathogenesis and GM feedback 
mechanisms from the perspective of the GM – meta-
bolite – brain axis. Accordingly, we employed 
a complex network approach to identify the hub 
bacteria and topological features of the GM networks, 
adopted a neural network approach to characterize 
the GM-associated metabolic landscapes from the 
periphery to the brain in AD model mice (i.e., APP/ 
PS1 mice), and used mediation analysis to unveil the 
critical roles of the gut bacteria in facilitating “gut – 
brain communication” mediated by metabolites.

Results

Distinct gut microbiota networks in Alzheimer’s 
disease and wild-type mice

To investigate the influence of GM – host interac-
tions on the GM features that underlie the genetic 
backgrounds of neurological disorders, we per-
formed 16S rRNA sequencing on collected mouse 
feces and compared the GM characteristics between 
the AD and wild-type (WT) mice (Supplementary 
Table S1). Rarefaction and accumulation curves 
demonstrated that there were sufficient data for all 
samples (Supplementary Figure S1). Based on the 
Aitchison distances, principal coordinates analysis 
(PCoA) demonstrated partial sample overlap 
between the AD and WT mice; the Shannon and 
Chao1 indices indicated no statistical differences 
between the AD and WT mice in terms of bacterial 
diversity or richness (Figure 1a). However, the AD
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Figure 1. Characteristics of the gut microbiota in the Alzheimer’s disease and wild-type mice. (a) Principal coordinates analysis (PCoA) 
and bacterial diversity in the Alzheimer’s disease (AD, red) and wild-type (WT, blue) mice. Each dot indicates a sample, and ellipses in 
PCoA contain samples with 90% confidence intervals for the groups. The Shannon and Chao1 indices for the AD and WT mice are 
displayed to the right and top of the PCoA plot, respectively. (b) comparison of gut microbiota (GM) similarity between the AD and WT 
mice. The Aitchison distances with normalized GM abundances were calculated to quantify the GM similarity among samples. Red and 
blue circles indicate sample distances in the AD and WT groups, respectively; yellow circles indicate the sample distances between 
the AD and WT mice. (c) differentially enriched genera between the AD (red) and WT (blue) mice. Asterisks indicate adjusted P-values 
with the global test in ANCOM-BC. (d) GM co-occurrence networks in the AD and WT mice. In the networks, each node indicates 
a genus and node size indicates its relative abundance. Node colors represent the taxonomical assignments at the phylum level, and 
the hub bacteria are labeled for the GM networks. Pink and green edges indicate positive and negative correlations, respectively; n and 
l indicate numbers of nodes and edges, respectively. (e) distributions of degrees in the bacterial co-occurrence networks of the AD and 
WT mice. (f) topological characteristics of the GM co-occurrence networks in the AD (red) and WT (blue) mice. Global test: NS, not 
significant; *p < .05; ***p < .001.
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mice exhibited robust alterations to GM composi-
tion compared to the WT mice, and the WT mice 
exhibited greater individual GM diversity (Padj  
< .001, Figure 1b). We further determined the differ-
entially abundant bacterial taxa between the AD and 
WT mice based on the normalized GM data 
(Supplementary Figure S2). Compared to the WT 
mice, the AD mice had significantly higher levels of 
bacteria, including Turicibacter (Padj < .001), 
Dubosiella (Padj < .001), and Akkermansia (Padj  
= .014) (Figure 1c and Supplementary Table S2). In 
contrast, the levels of bacteria, including 
Enterobacter (Padj <0.001), Oscillibacter (Padj  
< .001), and Clostridia UCG-014 (Padj < .001), were 
significantly lower in the AD mice than in the WT 
mice (Figure 1c and Supplementary Table S2). 
Considering the consistent rearing conditions of 
both mouse groups, these results suggest that speci-
fic pathogenetic genes (i.e., APP and PSEN1) in 
the AD mice stress bacterial homeostasis and 
thereby affect GM composition.

Because the GM is a micro-ecosystem that 
involves complex interactions, investigating the bac-
terial co-occurrence networks may help elucidate 
how GM interactions are modulated in AD trans-
genic mouse models (Figure 1d). SparCC correlation 
analysis showed that the distributions of node 
degree conformed to a power-law distribution in 
both the AD (R2 = 0.667, p = 0.018) and WT mice 
(R2 = 0.436, p = .007), indicating the feature of scale- 
free networks for the GM (Figure 1e). However, 
compared to the WT mice, the AD mice exhibited 
a larger bacterial network, as reflected by more 
nodes and edges as well as a higher clustering coeffi-
cient and graph density (Figure 1f). Further analysis 
of the bacterial networks revealed 10 hub bacterial 
taxa in the AD mice (i.e., Erysipelatoclostridium, 
Alistipes, Akkermansia, RF39, Lactobacillus, 
Mucispirillum, Clostridium sensu stricto 1, 
Erysipelotrichaceae undefined, Lachnospiraceae 
NK4A136 group, and Muribaculaceae unclassified) 
and 6 hub bacterial taxa in the WT mice (i.e., 
Curtobacterium, Odoribacter, Eubacterium xylano-
philum group, Muribaculum, Muribaculaceae 
unclassified, and Erysipelatoclostridiaceae unclassi-
fied) (Figure 1d). Notably, Akkermansia was both 
an enriched and hub bacterial genus in the AD mice. 
Given that Akkermansia provide neuroprotective 
effects via SCFA secretion and neuroinflammation 

reduction,28 they might play a compensatory role in 
restoring GM homeostasis in the AD mice under 
pathogenetic stress. Accordingly, these results pro-
vide clues as to how GM balance can be regained in 
neurological disorders via the regulation of hub bac-
teria and improve our understanding of peripheral – 
central bidirectional communication.

Potential impacts of gut microbiota alterations on 
the host nervous system

As the characteristics of the GM and host are 
correlated via their functions, we compared the 
functional distributions of the GM between 
the AD and WT mice using PICRUSt2 software 
(Supplementary Table S3). Among the 1,621 pre-
dicted functional items, we detected 112 differen-
tial pathways between the AD and WT mice, 
ranging from amino acid metabolism to vitamin 
biosynthesis (Figure 2a). Notably, the GM in 
the AD mice exhibited significantly lower trypto-
phan synthase (Padj = .033, Figure 2a), which 
involves serotonin production and is crucial for 
neuroprotection.29 In addition, the GM in the AD 
mice exhibited downregulated vitamin metabolism 
capacity, including quinolinate synthase (Padj  
= .033), GTP cyclohydrolase II (Padj = .040), and 
methylenetetrahydrofolate reductase NADPH 
(Padj = .033) (Figure 2a). These results collectively 
suggest that the alterations to the GM under neu-
ropathological conditions might be involved in the 
progression of neurological diseases via the regula-
tion of neuroactive gut metabolites.

We further investigated the GM functions in 
relation to the nervous system and explored the 
corresponding bacteria by using the gut – brain 
modules (GBMs) reported for neurological disor-
ders (e.g., depression). Notably, the GM in the AD 
mice exhibited enhanced acetate synthesis (Padj  
= .039, Figure 2b), indicating elevated levels of 
acetate in the gut; of note, GM-derived acetate is 
an essential SCFA that can modulate microglial 
maturation and Aβ phagocytosis in an AD mouse 
model.30 Meanwhile, the functional modules 
related to the synthesis of GABA (γ-aminobutyric 
acid) (Padj <0.05) and propionate (Padj = .011) were 
lower in the GM in the AD mice than that in the 
WT mice (Figure 2b). By detecting the host bac-
teria of the GBMs, we found that Akkermansia,
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Figure 2. Comparison of gut microbial functions between the Alzheimer’s disease and wild-type mice. (a) heatmap of the differentially 
enriched gut microbiota (GM) metabolic pathways. Red and blue squares indicate the normalized abundances of the metabolic 
pathways. Top: dendrograms showing the clustering results of the samples based on the Euclidean distances of metabolic pathways. 
Red and blue squares indicate the Alzheimer’s disease (AD) and wild-type (WT) mice, respectively. Right: metabolic pathways involving 
amino acid metabolism (blue), fatty acid metabolism (red), vitamin synthase (green), and energy metabolism (purple). (b) differentially 
enriched neuroactive functions in the AD (red) and WT (blue) mice with (left) mean proportions of functional items and (right) 95% 
confidence intervals in the enriched group. (c) correlations between bacterial genera and differential neuroactive functions. Left: 
yellow circles indicate significant correlations between specific bacterial genera and neuroactive functions from the gut – brain 
module database. Right: red and blue circles indicate enriched/hub bacterial genera in the AD and WT mice, respectively.
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a hub and enriched bacterial genus in the AD mice, 
participate in acetate and propionate synthesis; 
meanwhile, Enterobacter, which were enriched in 
the WT mice, are involved in GABA synthesis 
(Figure 2c). These GM functional prediction results 
indicate that the GM alterations in the AD mice 
play both deteriorative and compensatory roles. 
Therefore, we subsequently investigated the inter-
actions between the GM and nervous system by 
examining metabolites.

Fecal, serum, and cortical metabolomic differences 
in Alzheimer’s disease mice

To confirm our functional findings detailed above 
and explore the landscapes of the neurometabolic 
changes under normal and neurodegenerative con-
ditions, we used UHPLC-QTRAP-MS to quantify 
346 targeted metabolites (e.g., major metabolites in 
amino acids, fatty acids, bile acids, indoles, and 
carbohydrates) in the fecal, serum, and cortical 
samples from the AD and WT mice 
(Supplementary Table S4). We observed 
a descending trend in the numbers of detectable 
metabolites from the peripheral to the central tis-
sues: fecal, serum, and cortical samples contained 
219, 213, and 181 metabolites, respectively 
(Figure 3a). This suggests that the intestinal muco-
sal barrier and blood – brain barrier impede meta-
bolite transport from the peripheral organ(s) to the 
central nervous system (CNS).31 Orthogonal pro-
jections to latent structures discriminant analysis 
(OPLS-DA) revealed distinct metabolic landscapes 
in the AD and WT mice based on normalized 
metabolomic data (Figure 3b and Supplementary 
Figure S3). The OPLS-DA model based on the 
cortical metabolome had the greatest predictive 
performance (Q2 = 0.795, p < .01) followed by the 
serum metabolome (Q2 = 0.538, p < .01) and the 
fecal metabolome (Q2 = 0.472, p < .01). We subse-
quently selected the top 20 metabolites that were 
crucial to differentiate the AD and WT mice with 
respect to the cortical, serum, or fecal samples 
based on the variable importance in projection 
(VIP) values of the metabolites in the OPLS-DA 
models (Figure 3c). We also detected the differen-
tially enriched metabolites between the AD and 
WT mice in different tissues (Figure 3d and 
Supplementary Table S5). Upon combining the 

results of the OPLS-DA and differential analyses 
(Figure 3c,d), the top 20 metabolites crucial for the 
OPLS-DA models were also differentially enriched 
in the AD and WT mice, suggesting that they play 
important roles in AD progression or neuroprotec-
tion. In addition, these crucial and differentially 
enriched metabolites exhibited tissue-specific char-
acteristics: most of those in the cortex are ω-3 
polyunsaturated fatty acids, such as DHA and 
11Z,14Z,17Z-eicosatrienoic acid; most of those in 
serum are amino acids, such as N-acetyl-L-tyrosine 
and L-cystine; and most of those in feces are bile 
acids, such as deoxycholic acid (DCA) and iso-
deoxycholic acid (IsoDCA). Given that the GM 
participates in the metabolism of bile acids, which 
are critical for synaptic plasticity and inflammatory 
responses in hosts,32 we subsequently investigated 
the peripheral – central communications involving 
the GM – bile acid – unsaturated fatty acid axis in 
hosts under the pathogenetic stress of AD.

Associations between the gut microbiota and 
crucial metabolites in feces, serum, and cortical 
tissues

To integrate the GM and metabolomic data, we deter-
mined the associations between gut bacteria and the 
concentrations of metabolites in the feces, serum, and 
cortical tissues by constructing shallow neural net-
works with MMvec software (Figure 4a and 
Supplementary Figure S4). Interestingly, 
Lactobacillus, Odoribacter, Alistipes, and 
Muribaculaceae unclassified were significantly asso-
ciated with the metabolites across different tissues 
(Figure 4a). Within the microbe – metabolite net-
works, the differentially enriched genera, such as 
Dubosiella and Akkermansia, significantly influenced 
the concentration of 11Z,14Z,17Z-eicosatrienoic acid, 
an unsaturated fatty acid that was elevated in the 
cortical tissues of AD mice (Padj = .044, Figure 4b 
and Supplementary Table S6). Notably, we observed 
similar robust associations between the enriched 
11Z,14Z,17Z-eicosatrienoic acid level in the AD 
mice and the differentially abundant bacterial genera 
in feces, indicating their potential roles in AD 
(Figure 4b). Furthermore, the elevated levels of bile 
acids (e.g., DCA, IsoDCA, and hyodeoxycholic acid 
[HDCA]) in AD mouse feces were also associated 
with the differentially abundant genera (Figure 4b).
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Figure 3. Characteristics of the fecal, serum, and cortical metabolomes in the Alzheimer’s disease and wild-type mice. (a) compositions 
of the fecal, serum, and cortical metabolomes in the Alzheimer’s disease (AD) and wild-type (WT) mice. The metabolites are classified 
and indicated by different colors. Arc lengths indicate the proportions of the classifications. (b) orthogonal projections to latent 
structures discriminant analysis (OPLS-DA) plots based on the fecal, serum, and cortical metabolomes. Red and blue dots indicate 
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We also determined the associations between 
the hub bacteria and metabolites crucial for differ-
entiating the AD and WT mice (Figure 4c and 
Supplementary Table S6). Compared to the differ-
entially enriched bacteria, the hub bacteria exhib-
ited greater differences to the contributions of 
different metabolites. The hub bacterial taxa 
in AD mice, such as Alistipes, Akkermansia, and 
Erysipelatoclostridium, were associated with the 
concentrations of 11Z-eicosenoic acid and 
11Z,14Z,17Z-eicosatrienoic acid, which are unsa-
turated fatty acids that were elevated in the cortex 
in the AD mice (Figure 4c). In the microbe – fecal 
metabolite network, 11Z,14Z,17Z-eicosatrienoic 
acid, which was also enriched in the feces of 
the AD mice, was again associated with the AD 
hub bacteria (Figure 4c). In addition, DCA, 
IsoDCA, and HDCA, which are secondary bile 
acids whose levels were elevated in the feces of 
the AD mice, were associated to the levels of hub 
genera (Figure 4c). Meanwhile, we observed sparse 
associations between the hub gut bacteria and 
serum crucial metabolites (Figure 4c). These find-
ings highlight the influence of specific hub bacteria 
on the levels of distinct metabolites, particularly 
bile acids and unsaturated fatty acids within the 
peripheral and central tissues of mice. They also 
demonstrate how integrating GM and metabolo-
mic data can yield potential bacterial and metabolic 
candidates for investigating the pathogenesis and 
compensatory mechanisms of AD.

Fecal and cortical metabolites mediate the impacts 
of the gut microbiota on Alzheimer’s disease

To unravel the relationships among the feces, 
serum, and cortical tissues, we selected the meta-
bolites identified in the OPLS-DA models (i.e., 
VIP > 1) and confirmed their presence in each 

sample type (Figure 5a). Among the metabolites 
shared among all sample types, DCA, IsoDCA, 
and HDCA were elevated in both the serum and 
feces of the AD mice, which corresponds to the 
significant contributions from the differentially 
enriched and hub bacteria in the AD mice as stated 
above (Figure 4). In addition, as a neuroprotective 
metabolite, the level of 11Z,14Z,17Z-eicosatrienoic 
acid33 was elevated in both the fecal and cortical 
samples from the AD mice, suggesting a potential 
gastrointestinal tract – brain interaction 
(Figure 5a). Notably, TMAO (trimethylamine- 
N-oxide), which is an important GM metabolite 
and biomarker of cardiovascular diseases,34 was 
enriched and depleted in the cortex and serum in 
the AD mice, respectively (Figure 5a). Thus, these 
findings indicate that studying the metabolic con-
nectome offers valuable insights into the commu-
nication between peripheral and central tissues. 
Specifically, the inconsistencies in the changes of 
the same metabolites across sample types in the AD 
mice motivated us to investigate the causal rela-
tionship between GM and metabolite alterations 
under the pathogenetic stress of AD.

To further investigate the roles of GM, fecal, 
serum, and cortical metabolites in the occurrence 
of AD, we performed bidirectional mediation ana-
lysis with reference to the contributions of the GM 
to crucial metabolites (Figure 5b). Dubosiella, which 
were enriched in the AD mice, affected the occur-
rence of AD via cortical palmitoleic acid (23%, 
Pmediated = 0.040) and themselves (77%, Pdirected  
< .001, Figure 5b). Conversely, the impact of AD 
occurrence on the abundance of Dubosiella was 
also apparent (Pinv.total.effect < .001, Figure 5b). 
Considering the transgenic background of AD 
mice, we speculated that gut bacteria are altered 
under pathogenetic pressure and subsequently 
influence AD progression via their metabolite

samples from the AD and WT mice, respectively. Ellipses contain samples with 90% confidence intervals for the groups. The Q2 and 
R2Y scores for the OPLS-DA models are shown on the lower-right corners of the plots. (c) the top 20 metabolites contributing to the 
OPLS-DA models constructed for different tissues were selected, and their variable importance in projection (VIP) scores are indicated 
by horizontal coordinates. (d) differentially enriched metabolites between the AD and WT mice. Each dot represents a metabolite. 
Metabolites enriched in the AD and WT mice are indicated in red and blue, respectively. The horizontal gray line represents −log10 

(0.05), and the vertical gray lines indicate log2(0.67) and log2(1.5), respectively.
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Figure 4. Associations between gut bacteria and metabolites in the feces, serum, and cortical tissues. (a) Contributions of the gut microbiota 
(GM) to the levels of metabolites in different sample types. Points and arrows in emperor biplots indicate metabolites and bacterial genera, 
respectively. The top six bacterial genera that contributed to the metabolite levels were retained. Arrows pointing in the same direction as 
the metabolites indicate the co-occurrence of bacterial genera and metabolites. Arrows with small angles between them indicate the 
occurrence of bacterial genera; different colored points indicate their classifications. (b) associations of differentially enriched bacterial genera 
with the key metabolites in different sample types. (c) associations of the hub bacteria with the key metabolites in different sample types. For 
the plots in b and c, circles and hexagons indicate bacteria and metabolites, respectively. The differential/hub bacteria in the Alzheimer’s 
disease (AD) and wild-type (WT) mice are indicated in red and blue, respectively. Line thickness suggests the conditional probability of the 
interactions between the bacteria and metabolites. DHA: 4Z,7Z,10Z,13Z,16Z,19Z-docosahexaenoic acid; FMN: riboflavin-5-monophosphate; 
UCA: ursocholic acid; HDCA: hyodeoxycholic acid; IsoDCA: isodeoxycholic acid; MCA: omega-muricholic acid; CA: cholic acid; TCDCA: 
taurochenodeoxycholic acid; 7-DHCA: 7-dehydrocholic acid; UDCA: ursodeoxycholic acid; GDCA: glycodeoxycholic acid.
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Figure 5. Mediatory effects of metabolites between gut bacteria and Alzheimer’s disease occurrence. (a) venn diagrams of the 
common and specific metabolites among the feces, serum, and cortical tissues. Metabolites contributed to the orthogonal 
projections to latent structures discriminant analysis (OPLS-DA) models were selected according to sampling site (i.e., variable 
importance in projection [VIP] score > 1). (b) mediatory effects of metabolites between the gut microbiota (GM) and Alzheimer’s 
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secretion. In addition, Erysipelatoclostridium, which 
were hub bacteria in the AD mice, affected AD 
occurrence through both the mediation effect of 
fecal DCA (23%, Pmediated = .020) and themselves 
(77%, Pdirected < .001); meanwhile, the impact 
of AD occurrence on the abundance of 
Erysipelatoclostridium was limited (Pinv.total.effect  
= .180) (Figure 5b). The mixed linear model showed 
that in the AD mice, cortical palmitoleic acid level 
was positively correlated with the abundance of 
Dubosiella (R2 = 0.43, p = 0.023) and fecal DCA 
was positively correlated with the abundance of 
Erysipelatoclostridium (R2 = 0.37, p = .038) 
(Figure 5c). By tracing the palmitoleic acid and 
DCA from the peripheral to the central tissues, we 
identified a significant decrease of DCA in both 
the AD and WT mice (Figure 5d). Previous studies 
demonstrate the potent anti-inflammatory activity 
of palmitoleic acid and its inhibitory effects on Akt 
and JNK phosphorylation.35,36 In addition, DCA 
and its derivatives may affect blood – brain barrier 
permeability and modulate brain functions through 
bile acid receptors.19 Thus, these results offer valu-
able insights for targeting palmitoleic acid and DCA 
from peripheral organs to the CNS to induce 
a protective effect against inflammation or promote 
bile acid – brain signaling in preclinical studies. 
Furthermore, these findings elucidate the mediatory 
roles of fecal and cortical metabolites in the relation-
ship between the GM and the occurrence of AD, 
offering valuable insights for exploring the mechan-
isms that underlie the gut – brain axis.

Associations between targeted metabolites and 
cognitive functions in humans

Furthermore, we investigated the associations 
between the identified metabolites and cognitive 
functions in humans using publicly accessible data 
(Figure 6).37 Notably, the level of deoxycholate (a 
derivative of DCA) was correlated with Mini-Mental 

State Examination (MMSE) score (R2 = 0.03, p =  
0.026), indicating that DCA has a potential cogni-
tive-enhancing effect in humans. Furthermore, 
deoxycholate level was correlated with insulin level 
(R2 = 0.16, p < 0.001), although we did not observe 
a significant correlation between insulin and cogni-
tive functions in humans (Supplementary Figure 
S5). These relationships corroborate our findings 
from the AD mice, highlighting the important role 
of bacteria-derived DCA in facilitating peripheral – 
central communication. Given that the AD-enriched 
/hub bacteria Akkermansia participate in acetate 
synthesis, we investigated the relationships between 
SCFAs and cognitive functions in humans. We 
observed significant associations between MMSE 
score and various SCFA derivatives, including 
5-hydroxyindoleacetate (R2 = 0.09, p < 0.001), 
4-hydroxyphenylacetate (R2 = 0.02, p = 0.043), and 
3-hydroxy-2-ethylpropionate (R2 = 0.03, p = 0.042), 
suggesting that SCFAs positively impact cognitive 
functions in hosts (Supplementary Figure S6).

To decipher the connections between the 
observed metabolites and CNS cells, we collected 
the public-accessible single-cell RNA (scRNA) 
data from both the WT mice and normal control 
(NC) humans38,39 and detected the expression 
levels of metabolite-related genes in different cell 
types (Supplementary Figure S7). The metabolite- 
related genes mentioned here refer to the enzymes 
in the synthesis and metabolic pathways of the 
target metabolites retrieved from the literature as 
well as the target proteins of the metabolites. We 
observed differential expression levels of palmito-
leic acid- and DCA-related signaling molecules 
among different cell types in the cortex of both 
WT mice and normal control (NC) humans 
(Supplementary Figure S7b,d). The expression of 
NTRK2, which is modulated by palmitoleic acid 
and participates in the TrkB pathway,40 was high-
est in astrocytes in both the WT mice and HC 
humans (Supplementary Figure S7b,d). However,

disease (AD) occurrence. Dubosiella causally affects AD occurrence via cortical palmitoleic acid, while Erysipelatoclostridium 
causally affects AD occurrence via fecal deoxycholic acid (DCA). (c) mixed linear models between the metabolites and GM. In 
the AD mice, Dubosiella and palmitoleic acid exhibited a significant linear relationship, while Erysipelatoclostridium exhibited 
a significant linear association with DCA. (d) dynamic changes of palmitoleic acid and DCA from the peripheral to central tissues, 
respectively. Wilcoxon rank sum test: *p < .05, **p < .01, ***p < .001.
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the lowest expression of NTRK2 existed in differ-
ent cell types of WT mice and HC humans: its 
lowest expression was in excitatory neurons of 
WT mice but in microglia of HC humans 
(Supplementary Figure S7b,d). Meanwhile, the 
expression of RAC1, which is co-effected with 
DCA and affects blood – brain barrier 
permeability,19 was highest in microglia and low-
est in inhibitory neurons (Supplementary Figure 
S7b). In the NC humans, RAC1 was highest in 
endothelial cells and lowest in astrocytes 
(Supplementary Figure S7d). These findings not 
only demonstrate the differential potential 
impacts of the target metabolites on different 

CNS cell types, and exhibit different expression 
pattern of the metabolite-related genes in different 
cell types between human and mice.

Discussion

In this study, we conducted a comprehensive 
multi-omics integrative analysis to investigate the 
potential associations between the GM and periph-
eral – central metabolomic landscapes under the 
pathogenetic pressure of AD. Our findings revealed 
notable differences in the hub bacteria between 
the AD and WT mice, suggesting distinct trends 
in the stability and controllability of the gut

Figure 6. Relationships between deoxycholate and cognitive functions in humans. (a – d) regression models showing the relationships 
between deoxycholate (a derivative of deoxycholic acid [DCA]) and ADCS-ADL, ADAS-Cog, MMSE score, and serum insulin, 
respectively. ADCS-ADL: AD cooperative study–activities of daily Living; ADAS-Cog: AD assessment scale-cognitive Subscale; MMSE: 
mini-mental state examination.
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microecology.41,42 In addition, the GM variations 
were strongly correlated with the alterations of the 
fecal, serum, and cortical metabolomes in the AD 
mice. These findings provide valuable insights into 
the roles of the GM in the pathogenic mechanisms 
that underlie AD, warranting further exploration 
and investigation.

Previous studies have detected differences in the 
GM between WT mice and various mouse models 
of AD.43–45 For 5XFAD mice, some studies report 
higher levels of Bacteroidetes and lower levels of 
Firmicutes compared to WT mice,43 whereas other 
studies report higher levels of Proteobacteria and 
lower levels of Actinobacteria.45 Such inconsistent 
GM alterations have also been reported in studies 
involving the APP/PS1 mouse model of AD: some 
studies report increased Rikenellaceae and 
decreased Akkermansia in APP/PS1 mice, whereas 
we observed increased Akkermansia and decreased 
Oscillibacter. Nevertheless, many studies using 
germ-free mice or fecal microbiota transplantation 
have confirmed the involvement of the GM in AD 
development or cognitive improvement.46,47 

Therefore, it is essential to explore the robust AD- 
related GM signals across different mouse models 
and studies to facilitate the investigation of the GM 
in AD pathogenesis. Accordingly, in the present 
study, we not only detected the differential compo-
sition of the GM between the AD and WT mice, 
but also determined the hub bacteria of the GM of 
these groups using complex network analysis. By 
combining the findings from these two strategies, 
we detected robust bacterial signals in AD progres-
sion. For example, Akkermansia was both an 
enriched and hub bacterial genus in the AD mice. 
Hence, these bacterial signals reflect the GM altera-
tions in 9-month-old APP/PS1 mice and indicate 
their important roles in maintaining the microbial 
community.

Previous studies have investigated the metabo-
lomic features of individuals with AD and revealed 
the differential levels of bile acids and unsaturated 
fatty acids in individuals with AD compared to 
normal controls, emphasizing their important 
roles in AD pathogenesis.21,48 However, there is 
still a need to investigate the connections between 
these metabolites and the GM as well as the “micro-
biota – metabolite – brain axis” during AD 
progression.21,49 To dissect how the GM affects 

the levels of metabolites from peripheral to central 
tissues and which bacteria and metabolites partici-
pate in AD progression, we constructed micro-
biota – metabolomic networks spanning the feces 
to the cortex and explored the causal relationships 
between the specific bacteria and AD occurrence. 
Notably, we found bidirectional interactions 
between the GM and AD occurrence mediated by 
palmitoleic acid and DCA. Thus, the results eluci-
date the intact connections among the GM, meta-
bolites, and AD occurrence, extending our 
knowledge of the microbiota – metabolite – brain 
axis in AD.

One key finding of the present study is the palmi-
toleic acid-mediated involvement of Dubosiella in the 
pathogenesis of AD. Palmitoleic acid is a 16-carbon 
monounsaturated fatty acid known for its metabolic 
regulatory functions and potential to alleviate various 
metabolic disorders, such as obesity, hyperlipidemia, 
hyperglycemia, and inflammation.50–52 Our results 
suggest that the elevated levels of palmitoleic acid 
and other unsaturated fatty acids in the AD mice 
may serve as a compensatory mechanism to counter-
act inflammatory damage to neuronal cells during AD 
progression. As an enriched bacterial genus in AD 
mice, Dubosiella exhibit anti-aging effects, including 
reducing oxidative stress, improving endothelial func-
tion, and reshaping the GM.53 Furthermore, 
Dubosiella significantly contribute to palmitoleic 
acid level in the cortex. Interestingly, we found that 
the abundance of Dubosiella is concurrently influ-
enced by AD pathogenetic pressure. Considering the 
transgenic background of the AD mice, we hypothe-
size that Dubosiella are enriched within the GM under 
the pressure of AD-related pathogenetic alterations, 
which leads to an increase in palmitoleic acid level, 
thereby counteracting the damaging effects of AD 
pathological factors on brain function. Nevertheless, 
further experimental validation is required to confirm 
this compensatory mechanism.

Mediation analysis also revealed the DCA- 
mediated role of the GM bacterial genus 
Erysipelatoclostridium in the occurrence of AD. 
Erysipelatoclostridium are inflammation-associated 
microbes,54 and as a hub bacterial taxon in the AD 
mice, they contributed significantly to DCA synth-
esis in the gut. Therefore, we hypothesize that after 
alterations of the microbial niche in the AD mice, 
Erysipelatoclostridium become a hub bacterial taxon
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within the GM and contribute to the increased gut 
DCA synthesis. Moreover, the positive correlation 
between deoxycholate and cognitive function in 
patients with AD indicates that DCA has 
a protective role against damage to brain function. 
However, a previous study reports cytotoxic effects 
of DCA.20 Therefore, the precise role of DCA in 
neuromodulation requires further exploration.

Our findings also reveal the crucial role of meta-
bolites in mediating the interaction between the GM 
and AD occurrence. We identified two key types of 
metabolites – bile acids and unsaturated fatty acids – 
as well as critical gut bacterial taxa, such as Dubosiella 
and Erysipelatoclostridium. Given the important roles 
of these metabolites in immune modulation and neu-
roprotection, such as regulating Treg cell generation, 
preventing infections, and acting as acetylcholinester-
ase inhibitors,55–57 we hypothesize that some gut 
microbes become enriched or act as hub bacteria 
under genetic and environmental pressures during 
the development of AD. These bacteria then exten-
sively synthesize protective metabolites to counteract 
inflammatory damage to neuronal cells, thereby pro-
tecting the host via compensatory mechanisms. 
While these findings provide promising avenues 
for AD interventions, additional research is required 
to better understand the functionalities of the bacteria 
and metabolites reported herein in CNS cells.

In this study, we employed complex network, 
shallow neural network, and mediation effect 
analysis using multi-omics data. Nevertheless, 
this study has some limitations. First, while 
our bioinformatics-based approach greatly 
enhances the efficiency of screening target 
microbiota and metabolites, further biological 
experiments are needed to confirm their roles 
in AD. Second, the associations between the GM 
and metabolites may vary among host species. 
To explore how the GM influences AD progres-
sion via the metabolome in humans, subsequent 
omics studies should analyze fecal and blood 
samples from patients with AD and control 
subjects. Nevertheless, the complex network 
strategies employed in the present study are 
powerful tools for exploring key bacteria and 
their interactions within microbial communities, 
thereby aiding the identification of crucial nodes 
within GM networks. Furthermore, the use of 
shallow neural networks and mediation effect 

analysis can elucidate the bidirectional commu-
nication mechanisms between the GM and CNS 
via metabolites. Thus, our findings provide 
important insights into the pathogenic mechan-
isms and compensatory effects in AD and have 
significant potential for clinical applications.

In summary, there are three key findings of 
our study. First, we explored the hub bacteria in 
both WT and AD mice using a complex net-
work strategy. The results provide clues as to 
how GM balance can be restored in neurological 
disorders via the regulation of hub bacteria. 
Second, we characterized the GM-associated 
metabolic landscapes from the periphery to the 
cortex using a neural network approach, 
improving our understanding of the micro-
biota – metabolite – brain axis. Third, we inves-
tigated the causal relationships between the GM 
and metabolite alterations under the pathoge-
netic stress of AD using mediation effect analy-
sis, yielding valuable insights into the 
mechanisms that underlie the gut – brain axis. 
Although previous studies have explored the 
GM or metabolic profiles in both animal models 
of AD and patients with AD,21,44,45,48 few 
reports describe the alterations of GM- 
associated metabolic landscapes from peripheral 
to central tissues or the regulatory mechanisms 
of the GM – metabolite – brain axis under the 
pathogenetic pressure of AD. Meanwhile, our 
study systematically delineated the microbiota- 
driven metabolic alterations from the periphery 
to the cortex by integrating the microbiome and 
metabolome, thereby deciphering the bidirec-
tional GM – host communication via metabo-
lites. Thus, these findings reveal the adaptive 
and feedback mechanisms of the GM in 
response to host pathogenetic factors and pro-
vide new directions for developing interventions 
and treatments for AD that target gut – brain 
communication.

Methods

Mouse rearing and tissue harvesting

All animal procedures were approved by the 
Institutional Animal Care and Use Committee 
of the Shenzhen Institute of Advanced
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Technology, Chinese Academy of Sciences, in 
accordance with the National Care and Use of 
Laboratory Animals Guidelines (China). The 
APPswe/PSEN1dE9 (APP/PS1) mouse model 
was generated based on the amyloid cascade 
hypothesis58 and harbors the human mutations 
identified in patients with familial AD.59 This 
mouse model of AD is widely used to study 
neurodegenerative phenotypes, such as cognitive 
decline, synaptic failure, immune dysfunction, 
and altered metabolism.60–63 Therefore, it is an 
ideal model to study the alterations of the GM 
under AD pathogenetic pressure and how they 
affect peripheral to central metabolism. APP/PS1 
mice exhibit the first signs of Aβ plaque deposi-
tion in the cortex at 4 months of age, which 
gradually spreads to the hippocampus and 
broader areas in the cortex by 6 months of 
age.64 At 9 months of age, Aβ plaque loads 
become abundant in these mice and are asso-
ciated with apparent memory and cognitive 
deficits.60,65 Monitoring the amyloid load in cor-
tical brain regions by positron emission tomogra-
phy (PET) is often used to predict the rate of 
cognitive decline in clinical studies.66 Therefore, 
it is of interest to investigate the cortical metabo-
lomic profile in AD and explore its relationship 
with peripheral metabolism. The double- 
transgenic mice incorporate a chimeric human/ 
murine APP construct bearing the Swedish dou-
ble mutation and the exon-9-deleted PSEN1 
mutation (APPSwe + PSEN1dE9). These mice 
were generated by co-injection of transgenes, 
resulting in chromosomal co-localization and co- 
segregation of APP and PSEN1. The APP/PS1 
mice were maintained as double hemizygotes 
through crossings with WT siblings. Previous 
studies show sex differences in the GM composi-
tion and that estrogen can mediate GM altera-
tions and influence metabolism in mice.67,68 In 
addition, some studies demonstrate that GM 
manipulation by antibiotic treatment can 
attenuate AD pathology in male mice but not 
female mice.69,70 To avoid the variation caused 
by sex differences and hormone fluctuations, we 
used only male mice in this study.

We purchased the male APP/PS1 double- 
transgenic mice (B6C3-Tg [APPswe, PSEN1dE9] 
85Dbo/J; stock number 2010–0001) and their age- 

matched WT littermates from the Nanjing 
Biomedical Research Institute (Nanjing University, 
China). We segregated the mice according to geno-
type after weaning at 4 weeks of age (3–4 animals per 
cage, 3 cages per group) to avoid potential sharing of 
microbiota between groups owing to the coprophagic 
nature of mice.71,72 Animals had free access to ster-
ilized water and standard chow, and were housed in 
a room with a 12-h light – dark cycle at 24°C. Fresh 
stool samples were harvested from individual male 
mice at 9 months old (n = 10 per group), instantly 
frozen, and stored at − 80°C for further analysis. 
Blood samples were collected and allowed to coagu-
late at room temperature before centrifuged for 10  
minutes at 2,000 × g at 4°C. Serum was then collected 
and stored at − 80°C. After decapitation, the entire 
mouse brain was rapidly removed and transferred to 
cold saline. The cortex was then dissected from each 
hemisphere on ice, snap-frozen, and stored at − 80°C.

Metabolite isolation

For the fecal samples, we added 160 μL extraction 
solvent (methanol – acetonitrile – water = 2:2:1) to 
20 mg feces together with stable-isotope internal 
standards. We then vortexed the solution for 2 min 
at 4°C, incubated it for 20 min on ice, and centri-
fuged it for 20 min at 14,000 rpm at 4°C. We used 
a 96-well protein precipitation plate to collect the 
supernatant liquid and dried it in a vacuum centri-
fuge at 4°C for targeted metabolomic detection.

For the serum samples, we added 80 μL metha-
nol – acetonitrile mixture (1:1) and stable-isotope 
internal standards to 10-μL serum samples. After 
adequate vortexing, we centrifuged the solution for 
20 min at 14,000 rpm at 4°C. We subsequently col-
lected the supernatant and dried it with a vacuum 
centrifuge at 4°C.

For the cortical tissues, we also added 160 μL 
extraction solvent and stable-isotope internal stan-
dards to 10-mg samples. Then, we homogenized 
the mixture (24 × 2, 6.0 M/S, 60 s, twice) using 
FastPrep-24 homogenizer (MP Biomedicals, Santa 
Ana, CA, USA) and sonicated it twice for 30 min at 
4°C. After centrifuging the mixture at 14,000 rpm 
for 20 min at 4°C, we collected the supernatant 
liquid and dried the metabolites with a vacuum 
centrifuge at 4°C.
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Targeted metabolomic examination

We dissolved the isolated metabolites with 10 μL 
acetonitrile and water (1:1). We then vortexed the 
solution, centrifuged it for 15 min at 14,000 rpm and 
4°C, and collected the supernatant liquid for target 
metabolite examination. In this study, we adopted 
ultra-high-performance liquid chromatography 
coupled to triple-quadrupole linear ion-trap tandem 
mass spectrometry (UHPLC-QTRAP-MS/MS) to 
measure 346 targeted metabolites in samples 
(Shanghai Applied Protein Technology, Shanghai, 
China). In brief, we used an Agilent 1290 Infinity 
II Multisampler (Agilent Technologies, Santa Clara, 
CA, USA) to pump the prepared samples through 
HILIC (temperature: 35°C, flow rate: 0.3 mL/min, 
sample volume: 2 μL) and C18 (temperature: 40°C, 
flow rate: 0.4 mL/min, sample volume: 2 μL) col-
umns for metabolite separation and signal record-
ing. We then examined the metabolites with the 
QTRAP 6500 mass spectrometry system (SCIEX, 
Framingham, MA, USA) under a multi-reaction 
monitoring model (sheath and dry gas temperature: 
350°C, sheath and dry gas flow: 11 and 10 L/min, 
respectively).

We used MultiQuant Software (version 3.0.2) to 
isolate the raw peak intensities of the targeted meta-
bolites from the output data according to their reten-
tion times and calculated the quantities of the targeted 
metabolites based on the peak intensity ratios between 
the targeted metabolites and internal standards.

DNA extraction and 16S rRNA sequencing

In this study, we adopted the CTAB (cetyltrimethy-
lammonium bromide) method for DNA extraction. 
For each sample, we weighed 20 mg mouse feces, 
mixed them with 400 μL CTAB buffer (2%), and 
then incubated the solution for 1 h at 65°C. During 
the incubation, the solution was vortexed at 10-min 
intervals. We then added 400 μL chloroform and 
isoamyl alcohol (24:1) and vortexed the solution 
for 2 min. After centrifuging the solution for 10  
min at 12,000 rpm, we transferred the supernatant 
liquid to a new PCR tube and added another 350 μL 
chloroform – isoamyl alcohol mixture. Repeating 
the process of vortexing and centrifuging, we 
mixed the supernatant liquid with an equal volume 
of isopropanol and stored the solution for 2 h at −  

20°C. We then we centrifuged the mixture for 10  
min at 15,000 rpm, removed the supernatant liquid, 
and obtained the DNA precipitate.

We diluted the DNA to 1 ng/μL solution with 
sterile water and amplified the 16S rRNA V3–V4 
regions using 338F (5′- 
ACTCCTACGGGAGGCAGCAG-3′) and 806 R 
(5′-GGACTACHVGGGTWTCTAAT-3′) primers 
with Phusion High-Fidelity PCR Master Mix 
(New England Biolabs, Boston, MA, USA). We 
then purified the PCR products using an AxyPrep 
DNA Gel Extraction Kit (Axygen, New York, NY, 
USA). Next, we used a NEBNext Ultra DNA 
Library Prep Kit (New England Biolabs, Boston, 
MA, USA) to construct the libraries and committed 
the products to the MiSeq platform (Illumina, San 
Diego, CA, USA) for 300-nt paired-end sequencing 
after library quality assessment (Qubit 2.0 
Fluorometer, Thermo Fisher Scientific, Waltham, 
MA, USA).

Taxonomical and functional annotation

We filtered the reads from the raw data when they 
contained more than 10 low-quality (i.e., <Q30) 
bases or 15 bases of adapter sequences. We then 
performed taxonomical annotation with the fil-
tered reads using QIIME2 software (version 
2021.11.0).73 First, we connected the high-quality 
paired-end reads into tags using the VSEARCH 
function.74 Second, we detected the amplicon 
sequence variants (ASVs) for all samples using 
Deblur software (version 2021.11). Third, we 
applied the sklearn-based taxonomy classifier and 
trained the Silva database (version 13-8-99) for 
taxonomical annotation.75 Next, using the 
“vegan” package in R, we evaluated the data 
volume for the samples with the rarefaction curve 
function (bootstrap = 500, Supplementary Figure 
S1). Using PICRUSt2 software (version 2.3.0), we 
predicted the microbial functions based on the 
ASVs and obtained the distributions of KEGG 
Orthology and metabolic pathways for all samples 
based on the ASVs and taxonomic profiling.76

Gut – brain function prediction

Based on previously published GBMs, we analyzed 
the neurological-related bacterial functions.77 First,
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we collected the KEGG Orthology (KO) list for each 
GBM and retained non-redundant KOs. Second, we 
calculated the GBM abundances in the samples based 
on the KEGG Orthology distributions. Finally, we 
identified the genera that contained the KOs and 
GBMs through the ASVs and taxonomic profiling.

Bacterial co-occurrence network construction and 
topological analyses

To construct bacterial co-occurrence networks, we 
detected the correlation coefficients between the gen-
era for each group with SparCC software,78 calculated 
the P-values for the correlations (permutation = 100), 
and retained the relationships with r < −0.4 or r > 0.4 
(p < 0.05). We plotted the bacterial co-occurrence net-
works using Gephi (version 0.9.2).79 Based on the 
correlation matrix, we analyzed the topological fea-
tures of the co-occurrence network, including the 
average degree, average path length, clustering coeffi-
cient, graph density, and connectance using the 
“igraph” package in R.80 In the GM network, we 
designated the bacteria and their associations as 
nodes and links for the networks. Moreover, we 
detected the degree distributions by fitting a linear 
trend for each network and defined the nodes whose 
degree exceeded the third quartile among all nodes as 
the hub bacteria for the co-occurrence networks.

Construction of machine learning models of the gut 
microbiota and metabolomes in hosts

To investigate the associations between gut micro-
biota on host metabolites, we utilized MMvec 
software to establish shallow neural networks 
linking the normalized GM (Supplementary 
Figure S2) and the metabolites in feces, serum, 
and cortical tissues (Supplementary Figure S3).81 

First, we transformed the GM and metabolite data 
into BIOM format using the QIIME2 software 
(version 2020.06.0).73 Next, we constructed multi-
ple shallow neural networks with varying para-
meters (i.e., epochs and batch size) and assessed 
model performance based on training loss curves 
and cross-validation statistics (Supplementary 
Figure S4). We subsequently assessed the predic-
tive accuracy of the models based on Q 2 scores 
and examined the relationships of different genera 
to metabolite levels in distinct tissues.

Mediation effect analysis

To infer the impacts of the GM on AD occurrence, 
we adopted bidirectional mediation analysis to 
determine whether fecal, serum, and cortical meta-
bolites meditate the GM and AD phenotypes.82 

First, we constructed mixed linear models between 
the gut bacteria and metabolites using the “lme4” 
package in R as follows: metabolites ~ bacteria +  
(metabolites | groups).83 We then constructed 
logistic regression models between the groups and 
metabolites with Probit regression using the glm 
function in R as follows: groups ~ metabolites +  
bacteria. Based on these 2 models, we detected the 
mediation impacts of metabolites between the vari-
ables (i.e., bacteria) and the outcomes (i.e., AD or 
WT group) using the “mediation” package in R.84

scRNA data collection and analysis

We collected the public accessible scRNA data 
from previous study.38,39 With the collected 
scRNA data, we performed quality control and 
gene clustering by using “Seurat” (version 5.0.0) 
package from R.85 We removed the genes if they 
were unexpressed across all cells or fewer than 
three cells. In addition, we excluded abnormal 
cells based on deviations in their feature count, 
number of expressed features, or percentage of 
mitochondrial genes, ensuring these metrics 
remained within the range of 2.5% to 97.5%. 
Then, we normalized the counts of unique mole-
cular identifiers and identified variable features 
with SCTransform (variable.features.n = 3000). 
With the identified variable features, we further 
performed principal component analysis (npcs =  
100) and selected the top 50 principal components 
for downstream analysis. We identified clusters 
within samples with FindNeighbors and 
FindClusters (resolution = 1.1), and removed 
doublets according to the recommendations of 
10× Genomics with DoubletFinder (version 
2.0.3).86 All cells passing initial quality control 
were integrated using Harmony (version 1.1.0).87 

To determine the optimal number of harmony 
components, we calculated the percentage of the 
standard deviation explained by each harmony 
component followed by the cumulative summation 
of these percentages. Next, we filtered the number
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of harmony components based on the following 
criteria: (1) the cumulative percentage exceeded 
90%, and individual components explained at 
least 5% of the variance; (2) the detection of points 
where the percentage difference between adjacent 
harmony components was greater than 0.1%. The 
smaller value passing the two criteria was chosen as 
the ultimate number of harmony components. The 
integrated data were further visualized via uniform 
manifold approximation and projection.

Statistics

Given the compositional feature of the GM, we 
performed centered log-ratio transformation for 
GM normalization before other inferential 
statistics.88 Then, we determined the bacterial diver-
sity by calculating the Shannon and Chao1 indices 
using the “vegan” package in R.89 To detect the 
general features of the GM, we performed PCoA 
on all samples on the basis of Atchison distances 
using the “vegan” package in R. After filtering the 
taxonomical features present in less than three sam-
ples, we performed differential analysis between 
the AD and WT groups by adopting the global test 
in ANCOM-BC software (version 2.4.0).90 To detect 
differentially enriched GBMs between groups, we 
used STAMP software (version 2.1.3) with 
a 2-tailed Welch’s t-test (p < .05).91 For the metabo-
lomic data, we performed log2 transformation after 
internal sample standardization. With the normal-
ized metabolite annotation results, we performed 
OPLS-DA to detect the differences between different 
groups and obtained the VIP values for the metabo-
lites using the “ropls” package in R (permutation =  
100). We also applied Welch’s t-test to determine 
differentially enriched metabolites between groups 
and defined the metabolites with both p < .05 and 
VIP > 1.5 as being significantly crucial for AD occur-
rence. We adopted the EVenn tool to detect the 
shared and unique metabolites (i.e., VIP > 1) across 
different tissues.92 After determining the contribu-
tions of the GM to metabolites from the MMvec 
software, we visualized their relationships with 
Cytoscape software (version 3.8.0).93 We adjusted 
for multiple statistical tests using the Benjamini – 
Hochberg method (adjusted p < .05) and plotted the 
results using the “ggplot2” package in R.
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